概率论与数理统计的方差如何计算

网上有关“概率论与数理统计的方差如何计算”话题很是火热,小编也是针对概率论与数理统计的方差如何计算寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

方差还有一个性质:若a为常系数,则D(aX)=(a^2)D(X), D(X+a)=D(X)

D(2X-Y)=D(2X)+D(-Y)=(2^2)D(X)+[(-1)^2]D(Y)=4D(X)+D(Y)

7. D(X)=36*(1/6)*(1-1/6)=5

D(Y)=9*(1/3)*(1-1/3)=2

D(X-Y+1)=D(X-Y)=D(X)+D(Y)=5+2=7

在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义。

目录

概述

公式

方差的定义

方差的计算

方差的几个重要性质

常见随机变量的期望和方差

统计学的应用

切比雪夫不等式

展开

编辑本段概述

如下面的例子:

已知某零件的真实长度为a,现用甲、乙两台仪器各测量10次,将测量结果X用坐标上的点表示如图:

甲仪器测量结果:

乙仪器测量结果:

两台仪器的测量结果的均值都是 a 。但是用上述结果评价一下两台仪器的优劣,很明显,我们会认为乙仪器的性能更好,因为乙仪器的测量结果集中在均值附近。

由此可见,研究随机变量与其均值的偏离程度是十分必要的.那么,用怎样的量去度量这个偏离程度呢?容易看到E(|X-E(X)|)能度量随机变量与其均值E(X)的偏离程度. 但由于上式带有绝对值,运算不方便,通常用量

E{[X-E(X)]^2} 这一数字特征就是方差。

编辑本段公式

方差是实际值与期望值之差平方的期望值,而标准差是方差平方根。 在实际计算中,我们用以下公式计算方差。

方差是各个数据与平均数之差的平方的平均数,即 s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2] ,其中,x_表示样本的平均数,n表示样本的数量,^2表示平方,xn表示个体,而s^2就表示方差。

而当用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作为总体X的方差的估计时,发现其数学期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的数学期望才是X的方差,用它作为X的方差的估计具有“无偏性”,所以我们总是用[1/(n-1)]∑(Xi-X~)^2来估计X的方差,并且把它叫做“样本方差”。

方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定 。

编辑本段方差的定义

设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。

即D(X)=E{[X-E(X)]^2}称为方差,而σ(X)=D(X)^0.5(与X有相同的量纲)称为标准差(或均方差)。即用来衡量一组数据的离散程度的统计量。

方差刻画了随机变量的取值对于其数学期望的离散程度。

若X的取值比较集中,则方差D(X)较小;

若X的取值比较分散,则方差D(X)较大。

因此,D(X)是刻画X取值分散程度的一个量,它是衡量X取值分散程度的一个尺度。

编辑本段方差的计算

由定义知,方差是随机变量 X 的函数

g(X)=∑[X-E(X)]^2 pi

数学期望。即:

由方差的定义可以得到以下常用计算公式:

D(X)=∑xi?pi-E(x)?

D(X)=∑(xi?pi+E(X)?pi-2xipiE(X))

=∑xi?pi+∑E(X)?pi-2E(X)∑xipi

=∑xi?pi+E(X)?-2E(X)?

=∑xi?pi-E(x)?

方差其实就是标准差的平方。

编辑本段方差的几个重要性质

(1)设c是常数,则D(c)=0。

(2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。

(3)设 X 与 Y 是两个随机变量,则

D(X+Y)= D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}

特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),

则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况.

(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。

编辑本段常见随机变量的期望和方差

设随机变量X。

X服从(0—1)分布,则E(X)=p D(X)=p(1-p)

X服从泊松分布,即X~ π(λ),则 E(X)= λ,D(X)= λ

X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2, D(X)=(b-a)^2/12

X服从指数分布,即X~e(λ), E(X)= λ^(-1),D(X)= λ^(-2)

X服从二项分布,即X~B(n,p),则E(x)=np, D(X)=np(1-p)

X 服从正态分布,即X~N(μ,σ^2), 则E(x)=μ, D(X)=σ^2

X 服从标准正态分布,即X~N(0,1), 则E(x)=0, D(X)=1

编辑本段统计学的应用

概念

样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。

样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的平方根,用S表示。标准差相应的计算公式为

标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。

高考实例

(甘肃省,2002年)某校初三年级甲、乙两班举行电脑汉字输入速度比赛,两个班参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表所示:

班级 参加人数 平均字数 中位数 方差

甲 55 135 149 191

乙 55 135 151 110

有一位同学根据上表得出如下结论:

①甲、乙两班学生的平均水平相同;

②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀);

③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是________(填序号).

解:填①、②、③,显然①、③是正确的是.对于第②个结论,因为甲的中位数为149,表明甲班优秀人数未过半,而乙的中位数为151,表明乙班优秀人数在半数以上,故乙班优秀的人数比甲班优秀人数多,∴ ②正确.

编辑本段切比雪夫不等式

切比雪夫(Chebyshev)不等式

对于任一随机变量X ,若EX与DX均存在,则对任意ε>0,

恒有P{|X-EX|>=ε}<=DX/ε^2 或P{|X-EX|<ε}>=1-DX/ε^2

切比雪夫不等式说明,DX越小,则 P{|X-EX|>=ε}

越小,P{|X-EX|<ε}越大, 也就是说,随机变量X取值基本上集中在EX附近,这进一步说明了方差的意义。

同时当EX和DX已知时,切比雪夫不等式给出了概率P{|X-EX|>=ε}的一个上界,该上界并不涉及随机变量X的具体概率分布,而只与其方差DX和ε有关,因此,切比雪夫不等式在理论和实际中都有相当广泛的应用。需要指出的是,虽然切比雪夫不等式应用广泛,但在一个具体问题中,由它给出的概率上界通常比较保守。

切比雪夫不等式是指在任何数据集中,与平均数超过K倍标准差的数据占的比例至多是1/K^2。

在概率论中,切比雪夫不等式显示了随机变数的「几乎所有」值都会「接近」平均。这个不等式以数量化这方式来描述,究竟「几乎所有」是多少,「接近」又有多接近:

与平均相差2个标准差的值,数目不多於1/4

与平均相差3个标准差的值,数目不多於1/9

与平均相差4个标准差的值,数目不多於1/16

……

与平均相差k个标准差的值,数目不多於1/K^2

举例说,若一班有36个学生,而在一次考试中,平均分是80分,标准差是10分,我们便可得出结论:少於50分(与平均相差3个标准差以上)的人,数目不多於4个(=36*1/9)。

开放分类:

关于“概率论与数理统计的方差如何计算”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[直觉]投稿,不代表盛龙号立场,如若转载,请注明出处:https://m.snlon.net/sn/15682.html

(76)

文章推荐

  • 新加坡哪里可以购物新加坡哪里购物便宜

    网上有关“新加坡哪里可以购物新加坡哪里购物便宜”话题很是火热,小编也是针对新加坡哪里可以购物新加坡哪里购物便宜寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。去新加坡怎么少的撩购物呢,今天下班就是要和大家说一下关于新加坡的购物,大家可以了解一下,关于新加坡的一

    2025年09月14日
    103320
  • 从妇联往外调好调吗

    网上有关“从妇联往外调好调吗”话题很是火热,小编也是针对从妇联往外调好调吗寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。不好调。正式的教师是事业编制,妇联也是事业编,所以从教师岗位转到妇联工作人员岗位完全可以,在一定程度上取决于当地妇联的规模,有可能会帮忙组

    2025年09月20日
    98309
  • 济南到日照自驾游

    网上有关“济南到日照自驾游”话题很是火热,小编也是针对济南到日照自驾游寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。济南到日照全程约348.4公里。自驾路线:1.济南市内驾车方案1)从起点向正西方向出发,沿经二路行驶500米,过左侧的隆祥布店(西记)约12

    2025年09月21日
    99315
  • 实测教程”微乐打滚子有挂吗”(原来确实是有挂)

    >亲,微乐打滚子有挂吗这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果全额退款,本司推出的多功能作 弊辅助软件。软件提

    2025年09月26日
    95304
  • 嵌入式浴缸好还是独立浴缸好嵌入式浴缸如何安装

    网上有关“嵌入式浴缸好还是独立浴缸好嵌入式浴缸如何安装”话题很是火热,小编也是针对嵌入式浴缸好还是独立浴缸好嵌入式浴缸如何安装寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。对于很多上班族而言,在结束了一整天的工作之后,都想要回到家中泡一个舒适的热水澡,从而洗

    2025年09月26日
    93321
  • 开挂辅助工具“山西扣点点麻将开挂神器”(原来确实是有挂)

    >亲,山西扣点点麻将开挂神器这款游戏原来确实可以开挂,详细开挂教程1、起手看牌2、随意选牌3、控制牌型4、注明,就是全场,公司软件防封号、防检测、 正版软件、非诚勿扰。2022首推。全网独家,诚信可靠,无效果全额退款,本司推出的多功能作 弊辅助软件。

    2025年09月28日
    136302
  • 苏州阳澄湖在哪-

    网上有关“苏州阳澄湖在哪?”话题很是火热,小编也是针对苏州阳澄湖在哪?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。问题一:苏州阳澄湖属于哪个区属于苏州工业园区唯亭街道(原唯亭镇)。问题二:苏州市阳澄湖属于哪个区几个区共有的,西面属相城区,南

    2025年10月16日
    84318
  • 儿童床边护栏安全懒人包!台湾标准检验局:「18个月以下」勿使用护栏

    网上有关“儿童床边护栏安全懒人包!台湾标准检验局:「18个月以下」勿使用护栏”话题很是火热,小编也是针对儿童床边护栏安全懒人包!台湾标准检验局:「18个月以下」勿使用护栏寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。作者\爱宝贝亲子网※本篇产品安全文

    2025年10月31日
    73312
  • 必看教程“微乐湖南麻将万能开挂器通用版”开挂(透视)辅助教程

    您好:微乐湖南麻将万能开挂器通用版这款游戏是可以开挂的,软件加微信【添加图中微信】确实是有挂的,很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的,添加客服微信【添加图中微信】安装软件.1

    2025年11月26日
    44304
  • 开挂辅助工具“微乐捉老麻子如何才能赢”其实确实有挂

    无需打开直接搜索微信:本司针对手游进行,选择我们的四大理由:1、软件助手是一款功能更加强大的软件!无需打开直接搜索微信:2、自动连接,用户只要开启软件,就会全程后台自动连接程序,无需用户时时盯着软件。3、安全保障,使用这款软件的用户可以非常安心,绝对没有被封的危险存

    2025年11月26日
    50307
  • 实操教程“手机打牌老是输有什么办法可以破解”附开挂脚本详细步骤

     >>>您好:手机打牌老是输有什么办法可以破解,软件加微信【】确实是有挂的,很多玩家在手机打牌老是输有什么办法可以破解这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑手机打牌老是输有什么办法可以破解这款游戏是不是有挂,

    2025年11月26日
    39308
  • 实操教程“手机麻将开挂免费软件下载”其实确实有挂

    无需打开直接搜索微信:本司针对手游进行,选择我们的四大理由:1、软件助手是一款功能更加强大的软件!无需打开直接搜索微信:2、自动连接,用户只要开启软件,就会全程后台自动连接程序,无需用户时时盯着软件。3、安全保障,使用这款软件的用户可以非常安心,绝对没有被封的危险存

    2025年11月27日
    32317

发表回复

本站作者才能评论

评论列表(3条)

  • 直觉的头像
    直觉 2025年10月25日

    我是盛龙号的签约作者“直觉”

  • 直觉
    直觉 2025年10月25日

    本文概览:网上有关“概率论与数理统计的方差如何计算”话题很是火热,小编也是针对概率论与数理统计的方差如何计算寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够...

  • 直觉
    用户102504 2025年10月25日

    文章不错《概率论与数理统计的方差如何计算》内容很有帮助